STED microscopy resolves nanoparticle assemblies
نویسندگان
چکیده
منابع مشابه
STED microscopy resolves nanoparticle assemblies
We demonstrate the ability of stimulated emission depletion (STED) microscopy, a far-field fluorescence imaging technique with diffraction-unlimited resolution, to reveal the spatial order of fluorescent nanoparticles. Unlike its confocal counterpart, here STED microscopy resolves the arrangements of densely packed 40 nm beads, supramolecular aggregates in a cell membrane, and colloidal nanopar...
متن کاملSub-Abbe resolution: from STED microscopy to STED lithography
Commonly, in stimulated emission depletion (STED) fluorescence nanoscopy, light of a wavelength located at the red tail of the emission spectrum of the dye is used to shrink the effective fluorophore excitation volume and thus to obtain images with sub diffraction resolution. Here, we demonstrate that continuous wave (CW) STED nanoscopy is feasible using STED wavelengths located at the emission...
متن کاملResolution scaling in STED microscopy.
We undertake a comprehensive study of the inverse square root dependence of spatial resolution on the saturation factor in stimulated emission depletion (STED) microscopy and generalize it to account for various focal depletion patterns. We used an experimental platform featuring a high quality depletion pattern which results in operation close to the optimal optical performance. Its superior i...
متن کاملTwo-photon excitation STED microscopy.
We report sub-diffraction resolution in two-photon excitation (TPE) fluorescence microscopy achieved by merging this technique with stimulated-emission depletion (STED). We demonstrate an easy-to-implement and promising laser combination based on a short-pulse laser source for two-photon excitation and a continuous-wave (CW) laser source for resolution enhancement. Images of fluorescent nanopar...
متن کاملSample preparation for STED microscopy.
Since the discovery of the diffraction barrier in the late nineteenth century, it has been commonly accepted that with far-field optical microscopy it is not possible to resolve structural details considerably finer than half the wavelength of light. The emergence of STED microscopy showed that, at least for fluorescence imaging, these limits can be overcome. Since STED microscopy is a far-fiel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2006
ISSN: 1367-2630
DOI: 10.1088/1367-2630/8/6/106